|
|
Questa tesi si focalizza sulla programmazione logica induttiva (ILP) e, in particolare, in una sua ricontestualizzazione all'interno di ecosistemi tecnologici per lo sviluppo di applicativi di intelligenza artificiale (AI) moderni.
ILP è un paradigma per l'apprendimento automatico: sulla base di una conoscenza del dominio e una serie di esempi (positivi e negativi) nell'ambito di interesse — rappresentati utilizzando la logica —, un sistema ILP riesce a derivare un programma logico che generalizza tutti gli esempi positivi e nessuno degli esempi negativi. Il suo innesto all'interno di ecosistemi di intelligenza artificiale simbolica può portare allo sviluppo di nuovi scenari applicativi in cui la logica induttiva può diventare il ponte tra mondo simbolico e quello sub-simbolico.
In particolare, la tesi ha un duplice obiettivo. In primo luogo, una sistematizzazione dello stato dell’arte al fine di evidenziare gli approcci e le tecniche ILP esistenti ed eventuali tecnologie correlate. In secondo luogo, la progettazione e realizzazione un modulo ILP all'interno di un ecosistema tecnologico per AI simbolica — 2P-Kt — fornendo una prima implementazione fruibile in contesti pervasivi—quali quelli richiesti dalle moderne applicazioni di AI. Detto modulo andrà a supportare i principali algoritmi classici per ILP — Golem, Progol e Metagol — tramite una tecnologia multi-paradigma, consentendo l'utilizzo di tecniche induttive sia come applicazione che come libreria riusabile.
parole chiave
programmazione logica induttiva; ILP; AI simbolica; intelligenza artificiale; apprendimento automatico; 2p-Kt