Engineering Angle-of-Arrival-based Indoor Localization Systems
- Manage
- Copy
- Actions
- Export
- Annotate
- Print Preview
Choose the export format from the list below:
- Office Formats (1)
-
Export as Portable Document Format (PDF) using Apache Formatting Objects Processor (FOP)
-
- Other Formats (1)
-
Export as HyperText Markup Language (HTML)
-
Indoor localization is a hot research topic yet to find a shared agreement on the key methods and technologies enabling a satisfactory solution to the problem. Among the plethora of techniques currently being studied, “Angle of Arrival” (AoA) has recently gained momentum as the Bluetooth Special Interest Group introduced it in the new Bluetooth 5.1 standard as the release’s major enhancement. In Bluetooth-based AoA, a set of locator nodes are able to compute the angle between themselves and a to-be-located device sending an ad-hoc crafted Bluetooth packet. Given the angles and the positions of the locators, a data fusion algorithm can compute the approximate relative position of the observed device. In the right conditions, AoA can reach sub-meter accuracy. However only the lowest levels of the stack are already provided, and the implementation of the data fusion layer is left to the developers. Correctly engineering this layer is not an easy task, as it would require a complex tuning process through trial and error, involving cumbersome real world tests. The goal of this thesis is to build a tool aimed at supporting the engineering of AoA-based localization applications, both in-silico and in practice. Along this line, we develop an actor-based software framework that |
(keywords) angle-of-arrival, bluetooth, indoor localization, particle filtering, simulation |
Thesis
— thesis student
supervision
— supervisors
— co-supervisors
Giovanni Ciatto, Salvador Santonja
sort
— cycle
second-cycle thesis
— status
completed thesis
— language
dates
— degree date
26/03/2021
files