Risk Prediction as a Service: a DSS architecture promoting interoperability and collaboration

Stefano Mariani  /  Stefano Mariani

Clinical research and practice are rapidly changing mostly due to Information and Communication Technology, especially, as Machine Learning (ML) offers great potential for predictive and personalised medicine. Nevertheless, barriers are still existing for widespread adoption of ML tools, as highlighted by studies from the European Union. In this paper, we propose an architecture for a Decision Support Systems assisting clinicians in assessing health risk of patients by delivering “Risk Prediction as a Service”. By leveraging standard web technologies as well as the PMML and PFA formats for exchange of trained models, we achieve ubiquitous access to predictions, ease of deployment, seamless interoperability, while promoting collaboration.

Interactive web presentation at https://smarianimore.github.io/cbms-2019/



— speakers

— authors

— sort


— language



CBMS 2019 @ Cordoba, Spain

— where

CBMS 2019 @ Cordoba, Spain

— when


Partita IVA: 01131710376 - Copyright © 2008-2022 APICe@DISI Research Group - PRIVACY