Modelling Periodic Data Dissemination in Wireless Sensor Networks


Graham Williamson, Davide Cellai, Simon Dobson, Paddy Nixon

Epidemic-based communications, or 'gossiping', provides a robust and scalable method for maintaining a knowledge base in a sensor network faced with an unpredictable network environment. Since sensed information is often periodic in time, protocols should be able to manage multiple messages in an efficient way. We describe a mathematical model of gossiping dealing with multiple messages. We present simulation results that suggest the model can provide insights into the design and optimisation of sensor networks in the case of dissemination of periodically generated data. We show that it is possible to control data freshness without increasing overhead, and quantify the importance of topology in achieving timely dissemination.

(keywords) data dissemination, wireless sensor networks

Computer Modeling and Simulation, 2009. EMS '09. Third UKSim European Symposium on, pp. 499-504, novembre 2009.

@inproceedings{WilliamsonIJSSST2010,
   author = {Williamson, Graham and Cellai, Davide and Dobson, Simon and Nixon, Paddy},
   doi = {10.1109/EMS.2009.31},
   booktitle = {Computer Modeling and Simulation, 2009. EMS '09. Third UKSim European Symposium on},
   keywords = {data dissemination, wireless sensor networks},
   month = {27~} # nov,
   pages = {499--504},
   title = {Modelling Periodic Data Dissemination in Wireless Sensor Networks},
   url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5358712},
   year = 2009}
Tags:

Pubblicazione

— autori/autrici

Graham Williamson, Davide Cellai, Simon Dobson, Paddy Nixon

— stato

pubblicato

— tipo

articolo in atti

Sede di pubblicazione

— volume

Computer Modeling and Simulation, 2009. EMS '09. Third UKSim European Symposium on

— data di pubblicazione

novembre 2009

— pagine

499-504

URL & ID

pagina originale

— DOI

10.1109/EMS.2009.31

BibTeX

— BibTeX ID
WilliamsonIJSSST2010
— BibTeX category
inproceedings

Partita IVA: 01131710376 - Copyright © 2008-2021 APICe@DISI Research Group - PRIVACY