A&A for Modelling and Engineering Simulations in Systems Biology
- Manage
- Copy
- Actions
- Export
- Annotate
- Print Preview
Choose the export format from the list below:
- Office Formats (1)
-
Export as Portable Document Format (PDF) using Apache Formatting Objects Processor (FOP)
-
- Other Formats (1)
-
Export as HyperText Markup Language (HTML)
-
International Journal of Agent-Oriented Software Engineering 2(2), pages 222–245
2008
Systems Biology promotes a system-level understanding of biological systems, and requires modelling and simulating tools for understanding, controlling and re-creating biological systems and their dynamics. The articulation of multiagent systems (MAS) in terms of multiple, distributed and autonomous computational entities makes MAS a seemingly fit paradigm for modelling and simulating biological systems and networks according to the System Biology perspective. In this paper we adopt the A&A (agents and artifacts) meta-model – where the notions of agent, artifact, and workspace are taken as the basic bricks for MAS – as the ontological foundation for our multi-agent-based simulation (MABS) framework, and discuss how this impacts on the modelling and simulation of biological systems. After re-casting the A&A abstractions within the domain and design models, we specialise A&A within the System Biology context, and show a possible operational model based on the TuCSoN agent coordination infrastructure, upon which our simulation framework is implemented. There, agents – representing active biological components such as proteins – interact by means of artifacts built upon TuCSoN tuple centres – representing the bio-chemical environment that enables, mediates and govern the interaction of biological components – within workspaces—representing different spatial regions, like cell compartments. As a case study, we model and simulate a well-studied metabolic pathway such as glycolysis, and present some results of the simulation. |
(keywords) Systems biology; multiagent-based simulation; MABS; A&A metamodelling; MAS engineering; TuCSoN; multi-agent systems; agent-based systems; agents and artefacts; system dynamics; metabolic pathway; glycolysis |
Journals & Series
Publications / Views
Clouds
• tags • authors • editors • journals
Year
• 2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • 2014–1927
Sort
• in journal • in proc • chapters • books • edited • spec issues • editorials • entries • manuals • tech reps • phd th • others
Status
• online • in press • proof • camera-ready • revised • accepted • revision • submitted • draft • note
Services
• ACM Digital Library • DBLP • IEEE Xplore • IRIS • PubMed • Google Scholar • Scopus • Semantic Scholar • Web of Science • DOI
Publication
— authors
— editors
Massimo Cossentino, Giancarlo Fortino, Wilma Russo
— status
published
— sort
article in journal
— publication date
2008
— journal
International Journal of Agent-Oriented Software Engineering
— volume
2
— issue
2
— pages
222–245
URLs
identifiers
— DOI
— ACM
— IRIS
— Scopus
— print ISSN
1746-1375
— online ISSN
1746-1383
notes
— note
Special Issue on Multi-Agent Systems and Simulation