Per Year
@inproceedings{llmbasedhealthcarechatbots-telmed2024, author={Montagna, Sara and Aguzzi, Gianluca and Ferretti, Stefano and Pengo, Martino Francesco and Klopfenstein, Lorenz Cuno and Ungolo, Michelangelo and Magnini, Matteo}, booktitle={2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)}, keywords = {large language model, medical chatbot, chronic disease management}, title={LLM-based Solutions for Healthcare Chatbots: a Comparative Analysis}, year={2024}, volume={}, number={}, pages={346-351}, keywords={Pervasive computing;Privacy;Filtering;Conferences;Computational modeling;Medical services;Chatbots;Large Language Model;Medical Chatbot;Chronic Disease Management}, doi={10.1109/PerComWorkshops59983.2024.10503257}}
@article{ndnfl-fgcs2023, author = {Agiollo, Andrea and Enkeleda Bardhi and Mauro Conti and Nicolò Dal Fabbro and Riccardo Lazzeretti}, doi = {10.1016/j.future.2023.11.009}, issn = {0167-739X}, journal = {Future Generation Computer Systems}, keywords = {Anonymous communication, Federated Learning, Named Data Networking, Privacy-preserving}, pages = {288--303}, publisher = {Elsevier}, note = {Special Issue on Federated Learning on the Edge: Challenges and Future Directions}, title = {Anonymous Federated Learning via Named-Data Networking}, url = {https://www.sciencedirect.com/science/article/pii/S0167739X23004144}, volume = 152, year = 2024 }
@inproceedings{agentslargemodels-aamas2024, address = {Auckland, New Zealand}, author = {Ricci, Alessandro and Mariani, Stefano and Zambonelli, Franco and Burattini, Samuele and Castelfranchi, Cristiano}, booktitle = {Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024)}, editor = {Alechina, Natasha and Dignum, Virginia and Dastani, Mehdi and Sichman, Jaime Sim{\~a}o}, isbn = {978-1-4007-0486-4}, month = {6--10}}}, title = {The Cognitive Hourglass: Agent Abstractions in the Large Models Era}, url = {https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p2706.pdf}, urlopenaccess = {https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p2706.pdf}, urlpdf = {https://www.ifaamas.org/Proceedings/aamas2024/pdfs/p2706.pdf}, year = 2024 }
@inproceedings{samis-kdd2024, acm = {3671985}, author = {Agiollo, Andrea and Young In Kim and Khanna, Rajiv}, dblp = {conf/kdd/AgiolloKK24}, doi = {10.1145/3637528.3671985}, journal = {Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24), August 25–29, 2024, Barcelona, Spain}, keywords = {Neural Networks, Data-efficient Learning, Memorization, Flatness}, month = aug, numpages = 12, pages = {17--28}, publisher = {ACM}, scholar = {8151925308990231563}, title = {Approximating Memorization Using Loss Surface Geometry for Dataset Pruning and Summarization}, url = {https://dl.acm.org/doi/10.1145/3637528.3671985}, urlopenaccess = {https://dl.acm.org/doi/pdf/10.1145/3637528.3671985}, urlpdf = {https://dl.acm.org/doi/pdf/10.1145/3637528.3671985}, year = 2024 }
publications
without
IRIS ID
/
2024
/
personal
Andrea Agiollo
•
Roberta Calegari
•
Giovanni Ciatto
•
Cristian Cosci
•
Angelo Croatti
•
Enrico Denti
•
Matteo Magnini
•
Sara Montagna
•
Andrea Omicini
•
Giuseppe Pisano
•
Andrea Rafanelli
•
Federico Sabbatini