Per Year
@inproceedings{llmbasedhealthcarechatbots-telmed2024, author={Montagna, Sara and Aguzzi, Gianluca and Ferretti, Stefano and Pengo, Martino Francesco and Klopfenstein, Lorenz Cuno and Ungolo, Michelangelo and Magnini, Matteo}, booktitle={2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops)}, keywords = {large language model, medical chatbot, chronic disease management}, title={LLM-based Solutions for Healthcare Chatbots: a Comparative Analysis}, year={2024}, volume={}, number={}, pages={346-351}, keywords={Pervasive computing;Privacy;Filtering;Conferences;Computational modeling;Medical services;Chatbots;Large Language Model;Medical Chatbot;Chronic Disease Management}, doi={10.1109/PerComWorkshops59983.2024.10503257}}
@inproceedings{skemetrics-aaai2023, address = {San Francisco, California}, author = {Sabbatini, Federico and Calegari, Roberta}, booktitle = {AAAI 2023 Spring Symposium Series}, keywords = {Explainable artificial intelligence; Symbolic knowledge extraction; Readability metrics; AutoML}, month = mar, title = {On the Evaluation of the Symbolic Knowledge Extracted from Black Boxes}, year = 2023 }
@article{skenlp-jaamas38, articleno = 32, author = {Agiollo, Andrea and Siebert, Luciano Cavalcante and Murukannaiah, Pradeep Kumar and Omicini, Andrea}, dblp = {journals/aamas/AgiolloSMO24}, doi = {10.1007/s10458-024-09663-8}, iris = {11585/973894}, journal = {Autonomous Agents and Multi-Agent Systems}, keywords = {Natural language processing, post-hoc explanations, symbolic knowledge extraction, eXplainable AI, resource-friendly AI}, month = jul, note = {Special Issue on Multi-Agent Systems and Explainable AI}, numpages = 33, pages = {1--33}, publisher = {Springer}, scholar = {13114388339509722903}, scopus = {2-s2.0-85197706028}, title = {From Large Language Models to Small Logic Programs: Building Global Explanations from Disagreeing Local Post-hoc Explainers}, url = {http://link.springer.com/10.1007/s10458-024-09663-8}, urlopenaccess = {https://link.springer.com/content/pdf/10.1007/s10458-024-09663-8.pdf}, urlpdf = {https://link.springer.com/content/pdf/10.1007/s10458-024-09663-8.pdf}, volume = 38, wos = {WOS:001264787900001}, year = 2024 }
@article{ndnfl-fgcs2023, author = {Agiollo, Andrea and Enkeleda Bardhi and Mauro Conti and Nicolò Dal Fabbro and Riccardo Lazzeretti}, doi = {10.1016/j.future.2023.11.009}, issn = {0167-739X}, journal = {Future Generation Computer Systems}, keywords = {Anonymous communication, Federated Learning, Named Data Networking, Privacy-preserving}, pages = {288--303}, publisher = {Elsevier}, note = {Special Issue on Federated Learning on the Edge: Challenges and Future Directions}, title = {Anonymous Federated Learning via Named-Data Networking}, url = {https://www.sciencedirect.com/science/article/pii/S0167739X23004144}, volume = 152, year = 2024 }
@article{eneafl-fgcs154, author = {Agiollo, Andrea and Bellavista, Paolo and Mendula, Matteo and Omicini, Andrea}, dblp = {journals/fgcs/AgiolloBMO24}, doi = {10.1016/j.future.2024.01.007}, editor = {Hao Wu and Carlo Puliafito and Omer F. Rana and Luiz F. Bittencourt}, iris = {11585/953081}, issn = {0167-739X}, journal = {Future Generation Computer Systems}, keywords = {Serverless, Federated Learning, Energy Management, Internet of Things, Resource-constrained Learning}, month = may, note = {Special Issue ``Serverless Computing in the Cloud-to-Edge Continuum''}, numpages = 16, pages = {219--234}, publisher = {Elsevier Science B.V.}, scholar = {15164122000920541506}, scopus = {2-s2.0-85182399653}, title = {{EneA-FL}: Energy-aware Orchestration for Serverless Federated Learning}, url = {https://www.sciencedirect.com/science/article/pii/S0167739X24000074}, volume = 154, wos = {WOS:001164533000001}, year = 2024 }
@inproceedings{skidatadegradation-woa2024, author = {Rafanelli, Andrea and Magnini, Matteo and Agiollo, Andrea and Ciatto, Giovanni and Omicini, Andrea}, booktitle = {WOA 2024 -- 25th Workshop ``From Objects to Agents 2024''}, dblp = {conf/woa/RafanelliMACO24}, editor = {Alderighi, Marco and Baldoni, Matteo and Baroglio, Cristina and Micalizio, Roberto and Tedeschi, Stefano}, iris = {11585/975934}, issn = {1613-0073}, keywords = {Symbolic Knowledge Injection, Robustness, Neural Networks}, location = {Bard, AO, Italy}, month = jul, numpages = 13, pages = {20--32}, publisher = {Sun SITE Central Europe, RWTH Aachen University}, scopus = {2-s2.0-85200118300}, series = {CEUR Workshop Proceedings}, subseries = {AIxIA Series}, title = {An Empirical Study on the Robustness of Knowledge Injection Techniques Against Data Degradation}, url = {https://ceur-ws.org/Vol-3735/paper_02.pdf}, urlopenaccess = {https://ceur-ws.org/Vol-3735/paper_02.pdf}, urlpdf = {https://ceur-ws.org/Vol-3735/paper_02.pdf}, volume = 3735, year = 2024 }
publications
without
ACM ID
/
2024
/
personal
Andrea Agiollo
•
Roberta Calegari
•
Giovanni Ciatto
•
Angelo Croatti
•
Enrico Denti
•
Matteo Magnini
•
Sara Montagna
•
Andrea Omicini
•
Giuseppe Pisano
•
Andrea Rafanelli
•
Federico Sabbatini