The mythos of model interpretability


Zachary C. Lipton

Communications of the ACM 61(10), pages 36–43
October 2018

In machine learning, the concept of interpretability is both important and slippery.

Publications

Publications / Views

Home

Clouds
•  tags  •  authors  •  editors  •  journals  

Year
 2023    2022    2021    2020    2019    2018    2017    2016    2015    2014–1927

Sort
•  in journal  •  in proc  •  chapters  •  books  •  edited  •  spec issues  •  editorials  •  entries  •  manuals  •  tech reps  •  phd th  •  others  

Status
•  online  •  in press  •  proof  •  camera-ready  •  revised  •  accepted  •  revision  •  submitted  •  draft  •  note  

Services
•  ACM Digital Library  •  DBLP  •  IEEE Xplore  •  IRIS  •  PubMed  •  Google Scholar  •  Scopus  •  Semantic Scholar  •  Web of Science  •  DOI  

Publication

— authors

Zachary C. Lipton

— status

published

— sort

article in journal

— publication date

October 2018

— journal

Communications of the ACM

— volume

61

— issue

10

— pages

36–43

URLs

original page

identifiers

— DOI

10.1145/3233231

— ACM

10.1145/3233231

Partita IVA: 01131710376 — Copyright © 2008–2023 APICe@DISI – PRIVACY