LPaaS as Micro-intelligence: Enhancing IoT with Symbolic Reasoning
- Manage
- Copy
- Actions
- Export
- Annotate
- Print Preview
Choose the export format from the list below:
- Office Formats (1)
-
Export as Portable Document Format (PDF) using Apache Formatting Objects Processor (FOP)
-
- Other Formats (1)
-
Export as HyperText Markup Language (HTML)
-
Roberta Calegari, Giovanni Ciatto, Stefano Mariani, Enrico Denti, Andrea Omicini
Big Data and Cognitive Computing 2(3), article 23 (26 pages)
2018
In the era of Big Data and IoT, successful systems have to be designed to discover, store, process, learn, analyse, and predict from a massive amount of data—in short, they have to behave intelligently. Despite the success of non-symbolic techniques such as deep learning, still symbolic approaches to machine intelligence have a role to play in order to achieve key properties such as observability, explainability, and accountability. In this paper we focus on logic programming (LP), and advocate its role as a provider of symbolic reasoning capabilities in IoT scenarios, suitably complementing non-symbolic ones. In particular, we show how its re-interpretation in terms of LPaaS (Logic Programming as a Service) can work as an enabling technology for distributed situated intelligence. A possible example of hybrid reasoning – where symbolic and non-symbolic techniques fruitfully combine to produce intelligent behaviour – is presented, demonstrating how LPaaS could work in a smart energy grid scenario. |
(keywords) Logic Programming as a Service, IoT, symbolic reasoning |
Journals & Series
Publications / Views
Clouds
• tags • authors • editors • journals
Year
• 2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • 2014–1927
Sort
• in journal • in proc • chapters • books • edited • spec issues • editorials • entries • manuals • tech reps • phd th • others
Status
• online • in press • proof • camera-ready • revised • accepted • revision • submitted • draft • note
Services
• ACM Digital Library • DBLP • IEEE Xplore • IRIS • PubMed • Google Scholar • Scopus • Semantic Scholar • Web of Science • DOI
Publication
— authors
— status
published
— sort
article in journal
— publication date
2018
— journal
Big Data and Cognitive Computing
— volume
2
— issue
3
— article no.
23
— number of pages
26
URLs
identifiers
— DOI
— DBLP
— IRIS
— Scholar
— Scopus
— online ISSN
2504-2289