How to infer gene networks from expression profiles
- Manage
- Copy
- Actions
- Export
- Annotate
- Print Preview
Choose the export format from the list below:
- Office Formats (1)
-
Export as Portable Document Format (PDF) using Apache Formatting Objects Processor (FOP)
-
- Other Formats (1)
-
Export as HyperText Markup Language (HTML)
-
Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, Diego di Bernardo
Molecular Systems Biology
February 2007
Inferring, or 'reverse-engineering', gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse-engineering algorithms for which ready-to-use software was available and that had been tested on experimental data sets. We show that reverse-engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful. |
Publications / Views
Clouds
• tags • authors • editors • journals
Year
• 2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • 2014–1927
Sort
• in journal • in proc • chapters • books • edited • spec issues • editorials • entries • manuals • tech reps • phd th • others
Status
• online • in press • proof • camera-ready • revised • accepted • revision • submitted • draft • note
Services
• ACM Digital Library • DBLP • IEEE Xplore • IRIS • PubMed • Google Scholar • Scopus • Semantic Scholar • Web of Science • DOI
Publication
— authors
Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, Diego di Bernardo
— status
published
— sort
article in journal
— publication date
February 2007
— journal
Molecular Systems Biology
— issue
3
— chapter
78
identifiers
— DOI