How to model contrary-to-duty with GCP-nets


Andrea Loreggia, Roberta Calegari, Emiliano Lorini, Francesca Rossi, Giovanni Sartor

Intelligenza Artificiale 16(2), pages 185–198
December 2022

Preferences are ubiquitous in our everyday life. They are essential in the decision making process of individuals. Recently, they have also been employed to represent ethical principles, normative systems or guidelines. In this work we focus on a ceteris paribus semantics for deontic logic: a state of affairs where a larger set of respected prescriptions is preferable to a state of affairs where some are violated. Conditional preference networks (CP-nets) are a compact formalism to express and analyse ceteris paribus preferences, with some desirable computational properties. In this paper, we show how deontic concepts (such as contrary-to-duty obligations) can be modeled with generalized CP-nets (GCP-nets) and how to capture the distinction between strong and weak permission in this formalism. To do that, we leverage on an existing restricted deontic logic that will be mapped into conditional preference nets.

(keywords) Deontic logic, GCP-nets, ceteris-paribus semantics, contrary-to-duty, strong and weak permission

Journals & Series

Tags: CompuLaw

Publications

Publications / Views

Home

Clouds
•  tags  •  authors  •  editors  •  journals  

Year
 2023    2022    2021    2020    2019    2018    2017    2016    2015    2014–1927

Sort
•  in journal  •  in proc  •  chapters  •  books  •  edited  •  spec issues  •  editorials  •  entries  •  manuals  •  tech reps  •  phd th  •  others  

Status
•  online  •  in press  •  proof  •  camera-ready  •  revised  •  accepted  •  revision  •  submitted  •  draft  •  note  

Services
•  ACM Digital Library  •  DBLP  •  IEEE Xplore  •  IRIS  •  PubMed  •  Google Scholar  •  Scopus  •  Semantic Scholar  •  Web of Science  •  DOI  

Publication

— authors

Andrea Loreggia, Roberta Calegari, Emiliano Lorini, Francesca Rossi, Giovanni Sartor

— status

published

— sort

article in journal

— publication date

December 2022

— journal

Intelligenza Artificiale

— volume

16

— issue

2

— pages

185–198

URLs

original page

identifiers

— DOI

10.3233/IA-221057

— IRIS

11585/912872

— Scopus

2-s2.0-85146170765

— WoS / ISI

000905455600003

— print ISSN

1724-8035

— online ISSN

2211-0097

Partita IVA: 01131710376 — Copyright © 2008–2023 APICe@DISI – PRIVACY