Self-loops Favour Diversification and Asymmetric Transitions Between Attractors in Boolean Network Models


Michele Braccini, Sara Montagna, Andrea Roli

Stefano Cagnoni, Monica Mordonini, Riccardo Pecori, Andrea Roli, Marco Villani (a cura di)
Artificial Life and Evolutionary Computation, pp. 30–41
Springer International Publishing, Cham
2019

The process of cell differentiation manifests properties such as non-uniform robustness and asymmetric transitions among cell types. In this paper we adopt Boolean networks to model cellular differentiation, where attractors (or set of attractors) in the network landscape epitomise cell types. Since changes in network topology and functions strongly impact attractor landscape characteristics, in this paper we study how self-loops influence diversified robustness and asymmetry of transitions. The purpose of this study is to identify the best configuration for a network owning these properties. Our results show that a moderate amount of self-loops make random Boolean networks more suitable to reproduce differentiation phenomena. This is a further evidence that self-loops play an important role in genetic regulatory networks.

Tags:

Pubblicazioni

Pubblicazioni / Viste

Home

Nuvole
•  tag  •  autori  •  curatori  •  riviste  

Anno
 2023    2022    2021    2020    2019    2018    2017    2016    2015    2014–1927

Tipo
•  su rivista  •  in atti  •  capitoli  •  libri  •  curatele  •  speciali  •  editoriali  •  voci  •  manuali  •  rapporti  •  tesi phd  •  altre  

Stato
•  online  •  in stampa  •  bozza stampa  •  camera-ready  •  revisionato  •  accettato  •  in revisione  •  sottoposto  •  bozza  •  nota  

Servizi
•  ACM Digital Library  •  DBLP  •  IEEE Xplore  •  IRIS  •  PubMed  •  Google Scholar  •  Scopus  •  Semantic Scholar  •  Web of Science  •  DOI  

Pubblicazione

— autori/autrici

— a cura di

Stefano Cagnoni, Monica Mordonini, Riccardo Pecori, Andrea Roli, Marco Villani

— stato

pubblicato

— tipo

articolo in atti

— data di pubblicazione

2019

— volume

Artificial Life and Evolutionary Computation

— pagine

30–41

— indirizzo

Cham

URL

pagina originale

identificatori

— IRIS

11585/691048

— Scopus

2-s2.0-85067202680

— print ISBN

978-3-030-21733-4

Partita IVA: 01131710376 — Copyright © 2008–2023 APICe@DISI – PRIVACY