CILC 2022 – Italian Conference on Computational Logic, pp. 104-118
CEUR Workshop Proceedings (AI*IA Series) 3204
CEUR-WS
2022
In this paper we address the problem of hybridising symbolic and sub-symbolic approaches in artificial intelligence, following the purpose of creating flexible and data-driven systems, which are simultaneously comprehensible and capable of automated learning. In particular, we propose a logic API for supervised machine learning, enabling logic programmers to exploit neural networks – among the others – in their programs. Accordingly, we discuss the design and architecture of a library reifying APIs for the Prolog language in the 2P-Kt logic ecosystem. Finally, we discuss a number of snippets aimed at exemplifying the major benefits of our approach when designing hybrid systems.
parole chiave
logic programming, machine learning, API, 2P-Kt
presentazione di riferimento
evento origine
rivista o collana
progetto finanziatore
EXPECTATION — Personalized Explainable Artificial Intelligence for decentralized agents with heterogeneous knowledge
(01/04/2021–31/03/2024)
StairwAI — Stairway to AI: Ease the Engagement of Low-Tech users to the AI-on-Demand platform through AI
(01/01/2021–31/12/2023)
funge da
pubblicazione di riferimento per presentazione