Show last authors
1 ## replace MyName with the real class name
2 ## save this template using the save button at the top left
3 #includeForm("Courses.CourseClassSheet")
4
5 \\
6 1.1 Course materials
7
8 * {attach:Course outline|00-courseoutline.pdf}.
9
10 * Lecture slides can be downloaded from [AMS Campus>http://campus.cib.unibo.it/cgi/lista?;codMateria=34781;annoAccademico=2010].
11
12 * [Lab|AI1011lab] page
13
14
15 \\
16 1.1 Additional teaching materials
17
18 <i>The following papers are available only for teaching purposes.</i>
19
20
21 1.1.1 AI history
22
23 * {attach:Dartmouth summer research project proposal|http://apice.unibo.it/xwiki/bin/download/Courses/AI0910/dartmouth.pdf}. The proposal for a project that has been the origin of AI.
24
25 1.1.1 Search
26
27 * Search strategies {attach:exercises|esercizistrategie.pdf} (in Italian). Credits Prof. Paola Mello.
28
29 1.1.1 CSP
30
31 * {attach:A brief introduction to mainstream techniques of constraint satisfaction|http://apice.unibo.it/xwiki/bin/download/Courses/AI0910/bartak-constraintpropagationandbacktracking.pdf}. R.Barták. Constraint propagation and backtracking-based search. CP Summer school 2005.
32
33 * {attach:Incomplete depth-first search techniques: a short survey|http://apice.unibo.it/xwiki/bin/download/Courses/AI0910/bartak2004-incompletedepth-firsttechniques.pdf}. R.Barták, Proceedings of CPDC 2004.
34
35 * {attach:Where the Really Hard Problems Are|http://apice.unibo.it/xwiki/bin/download/Courses/AI0910/cheesman-wherereallyhardproblemsare.pdf}. P.Cheesman et al., Proc. 12th IJCAI, 1991.
36
37 * {attach:Phase transitions and the search problem|http://apice.unibo.it/xwiki/bin/download/Courses/AI0910/hogg1996-Phasetransitionsandthesearchproblem.pdf}. T.Hogg et al., Artificial Intelligence, n.81, 1996.
38
39
40 1.1.1 Metaheuristics
41
42 * {attach:Introduction to metaheuristics|http://apice.unibo.it/xwiki/bin/download/Courses/AI0809/blum_roli_metaheuristics-preprint.pdf}. C.Blum, A.Roli. Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys, Vol.35, N.3, 2003. (preprint available)
43
44 * {attach:A multi-agent architecture for metaheuristics|http://apice.unibo.it/xwiki/bin/download/Courses/AI0809/magma-preprint.ps}. M.Milano, A.Roli. MAGMA: A Multiagent Architecture for Metaheuristics. IEEE Trans. on Systems, Man and Cybernetics - Part B, Vol.34, Issue 2, April 2004. (preprint available)
45
46 * {attach:A formal model of local search|http://apice.unibo.it/xwiki/bin/download/Courses/AI0809/roli2004-a_model_for_local_search.pdf}. A.Roli. A note on a model of local search. Technical report TR/IRIDIA/2004/23.01, IRIDIA, Université Libre de Bruxelles, Belgium.
47
48 * {attach:On the relation between complete and incomplete search|http://apice.unibo.it/xwiki/bin/download/Courses/AI0910/milano-roli-cpaior2002.pdf}. M.Milano, A.Roli. Proceedings of CPAIOR 2002.
49
50 * An introduction to Hybrid metaheuristics ({attach:slides|hybrid-metaheuristics.pdf}).
51
52 * [Large Neighbourhood Search Algorithms for the Founder Sequence Reconstruction Problem|http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2010-012r001.pdf]. A. Roli, S. Benedettini, T. Stuetzle and C. Blum. TR/IRIDIA/2010-012.
53
54 * {attach:Comet source code|queens-comet.zip} of examples of stochastic local search algorithms for the N-queens problem.
55
56
57 1.1.1 Evolutionary computation
58
59 * [Book|http://www.gp-field-guide.org.uk/] (free download, [Creative Commons|http://creativecommons.org/]) on genetic programming. R. Poli, W.B. Langdon, N.F. McPhee, J. Koza. <i>A Field Guide to Genetic Programming</i>.
60
61
62 1.1.1 Swarm intelligence
63
64 * M. Dorigo, E. Bonabeau, G. Theraulaz. [Ant algorithms and stigmergy|http://code.ulb.ac.be/dbfiles/DorBonThe2000fgcs.pdf]. Future Generation Computer Systems, Vol.16, n.9, 2000.
65
66 * C. Blum. [Ant colony optimization: Introduction and recent trends|http://dx.doi.org/10.1016/j.plrev.2005.10.001]. Physics of Life Reviews, 2(4):353-373, 2005.
67
68 * H. Labella, M. Dorigo, J.-L. Deneubourg. [Division of Labour in a Group of Robots Inspired by Ants' Foraging Behaviour|http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.8027&rep=rep1&type=pdf]. Technical Report IRIDIA-TR-2004-13, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium, 2005.
69
70
71
72 1.1.1 Logics
73
74 * {attach:Alcune considerazioni sulla logica proposizionale|palladino-logicaproposizionale.pdf}. D. Palladino, 2003.
75
76 * [Introduction to SAT solving algorithms|http://www.cs.cornell.edu/gomes/papers/SATSolvers-KR-book-draft-07.pdf]. C.P. Gomes, H. Kautz, A. Sabharwal and B. Selman. Satisfiability solvers. Book chapter draft, 2007.
77
78 * {attach:Introduction to fuzzy system|http://apice.unibo.it/xwiki/bin/download/Courses/AI0809/kosko-ScientificAmerican.pdf}. B. Kosko and S. Isaka, Fuzzy Logic. Scientific American, July 1993.
79
80
81 ##1.1.1 Software
82
83 ##* [JaCoP|http://jacop.osolpro.com]: libreria Java per la programmazione a vincoli. {attach:Materiale per esercitazione|jacop-examples.zip}.
84
85 ##* [EasyLocal++|http://tabu.diegm.uniud.it/EasyLocal++]: framework in C++ per lo sviluppo di algoritmi di ricerca locale stocastica. [Presentazione di EasyLocal++|http://tabu.diegm.uniud.it/EasyLocal++/raw-attachment/wiki/WikiStart/OSSICP2008-EasyLocal.pdf].
86
87 ##* [Comet|http://www.comet-online.org]: linguaggio per lo sviluppo di meta-euristiche. {attach:Materiale per esercitazione|comet-examples.zip}.
88
89 ##* [JavaNNS|http://www.ra.cs.uni-tuebingen.de/software/JavaNNS/welcome_e.html]: tool in Java per sviluppo e test di reti neuronali artificiali.
90
91 ##* [UBCSAT|http://www.satlib.org/ubcsat/]: stochastic local search SAT solver.
92
93 ##* [MiniSAT|http://minisat.se/]: open-source, complete SAT solver.
94
95
96
97
98 1.1 Acknowledgements
99
100 I thank Prof. Paola Mello, Prof. Michela Milano and Prof. Giorgio Buttazzo for giving me the permission of using part of their teaching material, which was revised and emended for this course.
101
102
103 1.1 AI*IA - Italian association for artificial intelligence
104
105 The Italian association for artificial intelligence is a non profit association promoting AI research. Website: [www.aixia.it|http://www.aixia.it/]
106
107 <i>L'Associazione Italiana per l'Intelligenza Artificiale è un'associazione non profit per la promozione dello studio e della ricerca nel campo dell'intelligenza artificiale. Offre ogni anno premi per tesi sull'Intelligenza Artificiale e borse di studio per la partecipazione ad eventi ai suoi iscritti.
108 <br>
109 Per informazioni, gli studenti possono rivolgersi al docente di questo corso o ai referenti indicati sul sito dell'associazione ([www.aixia.it|http://www.aixia.it/]).
110 </i>

Partita IVA: 01131710376 - Copyright © 2008-2021 APICe@DISI Research Group - PRIVACY