Per Year
@article{skeislr-csur56,
acm = {3645103},
articleno = 161,
author = {Ciatto, Giovanni and Sabbatini, Federico and Agiollo, Andrea and Magnini, Matteo and Omicini, Andrea},
dblp = {journals/csur/CiattoSAMO24},
doi = {10.1145/3645103},
eissn = {1557-734},
iris = {11585/969235},
issn = {0360-0300},
journal = {ACM Computing Surveys},
keywords = {Logic; Machine learning theory; Hybrid symbolic-numeric methods; Knowledge representation and reasoning},
month = jun,
number = 6,
numpages = 35,
pages = {161:1--161:35},
publisher = {ACM},
scholar = {13701373869146776438},
scopus = {2-s2.0-85188835517},
semanticscholar = {267611660},
title = {Symbolic Knowledge Extraction and Injection with Sub-symbolic Predictors: A Systematic Literature Review},
url = {https://dl.acm.org/doi/10.1145/3645103},
urlopenaccess = {https://dl.acm.org/doi/pdf/10.1145/3645103},
urlpdf = {https://dl.acm.org/doi/pdf/10.1145/3645103},
volume = 56,
wos = {WOS:001208566200027},
year = 2024
}
acm = {3645103},
articleno = 161,
author = {Ciatto, Giovanni and Sabbatini, Federico and Agiollo, Andrea and Magnini, Matteo and Omicini, Andrea},
dblp = {journals/csur/CiattoSAMO24},
doi = {10.1145/3645103},
eissn = {1557-734},
iris = {11585/969235},
issn = {0360-0300},
journal = {ACM Computing Surveys},
keywords = {Logic; Machine learning theory; Hybrid symbolic-numeric methods; Knowledge representation and reasoning},
month = jun,
number = 6,
numpages = 35,
pages = {161:1--161:35},
publisher = {ACM},
scholar = {13701373869146776438},
scopus = {2-s2.0-85188835517},
semanticscholar = {267611660},
title = {Symbolic Knowledge Extraction and Injection with Sub-symbolic Predictors: A Systematic Literature Review},
url = {https://dl.acm.org/doi/10.1145/3645103},
urlopenaccess = {https://dl.acm.org/doi/pdf/10.1145/3645103},
urlpdf = {https://dl.acm.org/doi/pdf/10.1145/3645103},
volume = 56,
wos = {WOS:001208566200027},
year = 2024
}
@inproceedings{samis-kdd2024,
acm = {3671985},
author = {Agiollo, Andrea and Young In Kim and Khanna, Rajiv},
dblp = {conf/kdd/AgiolloKK24},
doi = {10.1145/3637528.3671985},
journal = {Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24), August 25–29, 2024, Barcelona, Spain},
keywords = {Neural Networks, Data-efficient Learning, Memorization, Flatness},
month = aug,
numpages = 12,
pages = {17--28},
publisher = {ACM},
scholar = {8151925308990231563},
title = {Approximating Memorization Using Loss Surface Geometry for Dataset Pruning and Summarization},
url = {https://dl.acm.org/doi/10.1145/3637528.3671985},
urlopenaccess = {https://dl.acm.org/doi/pdf/10.1145/3637528.3671985},
urlpdf = {https://dl.acm.org/doi/pdf/10.1145/3637528.3671985},
year = 2024
}
acm = {3671985},
author = {Agiollo, Andrea and Young In Kim and Khanna, Rajiv},
dblp = {conf/kdd/AgiolloKK24},
doi = {10.1145/3637528.3671985},
journal = {Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24), August 25–29, 2024, Barcelona, Spain},
keywords = {Neural Networks, Data-efficient Learning, Memorization, Flatness},
month = aug,
numpages = 12,
pages = {17--28},
publisher = {ACM},
scholar = {8151925308990231563},
title = {Approximating Memorization Using Loss Surface Geometry for Dataset Pruning and Summarization},
url = {https://dl.acm.org/doi/10.1145/3637528.3671985},
urlopenaccess = {https://dl.acm.org/doi/pdf/10.1145/3637528.3671985},
urlpdf = {https://dl.acm.org/doi/pdf/10.1145/3637528.3671985},
year = 2024
}